Basic Chemistry: ELEMENTS AND ATOMS

-Trace elements

-Found in very small amounts but are essential to proper cellular activities

- Ex: iron, magnesium, iodine

I. ELEMENTS \& ATOMS:

\bigcirc Matter $=$ Anything that takes up space and has mass

- Element = A substance that cannot be broken down into simpler substances
- Periodic Table - lists all known elements -1-92 occur in nature (natural elements) $\circ 93$ and above are synthetic (manmade)
- Element names are abbreviated using chemical symbols ($\mathrm{N}, \mathrm{C}, \mathrm{Ca}, \mathrm{Fe}, \mathrm{Cl}$)

3 Subatomic particles make up an atom:

1. Protons $(P)=$ positively charged particles. In the nucleus
2. Neutrons (N) = no charge (neutral), In the nucleus
3. Electrons (e-) = (negative charge. Outside the nucleus The Atom

2 parts of an atom:

1. Nucleus = Center of atom; contains protons \& neutrons
2. Electron cloud/energy levels - around the nucleus

II. ISOTOPES:
 \odot Isotopes $=$ Atoms of the same element that have different numbers of neutrons

II. ISOTOPES:

- Named by their mass numbers

$$
\mathrm{C}-12=(\underline{\mathbf{N}}+6 \mathrm{P})
$$

$$
\mathrm{C}-13=(7 \mathrm{~N}+6 \mathrm{P})
$$

$$
\text { C-14=(8N+6P) } \rightarrow \text { Radioactive }
$$ (nuclei break apart)

- Used in the medical field

III.ATOMIC NUMBER \& MASS NUMBER:
- Atomic Number $=$ number of protons and/ or electrons of an atom
- Ex: $\mathrm{Na}-23$ contains 11 electrons and 11 protons

IV.ENERGY LEVELS \& DIAGRAMING ATOMS:

\odot Energy levels $=$ regions around the nucleus where electrons travel. Also known as electron shells.
$\bullet 1^{\text {st }}$ energy level can have 2 electrons

- Octet Rule = Each energy level the first can have up to 8 electrons

Ex: Carbon (C)

Atomic \# = 6; Mass \# = 14

I. COMPOUNDS \& BONDING:

- Compound $=$ a substance made of chemically combined elements.
- Atoms bond to form stable compounds
- Atoms need 8 e- in OUTER energy level to be stable;
Exception: hydrogen needs 2 e-

II. POLAR Covalent Bonds
- Polar = unequal distribution of charge
- Each molecule has a positive end and a negative end

. COMPOUNDS \& BONDING:

- Elements can combine in two ways:

1. Covalent Bonding:

- Covalent bonds SHARE electrons to fill their outer energy level
- The positively charged nucleus is attracted to the negatively charged electrons
- Water, sugars, fats, and proteins are covalent molecules

I. COMPOUNDS \& BONDING:

- Molecule $=$ a group of covalently bonded atoms with no charge Ex: $\mathrm{H}_{2} \mathrm{O} \rightarrow 2$ hydrogen atoms +1 oxygen atom - Oxygen needs two electrons to become stable
- Each hydrogen needs 1 electron to fill orbital
- Therefore, they SHARE!!

II. WATER IS POLAR

- Ex: Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ molecule --> Oxygen is much stronger and therefore has a stronger negative charge than the hydrogen's positive charge

II. WATER IS POLAR

Because of water's polarity, it can dissoive many ionic compounds and other polar compounds such as sugars

III. UNIQUENESS OF WATER- due to its polarity!

1. Cohesion $=$ the attraction between like molecules

- Surface tension results from the cohesive properties of water.
- The polarity of water cause the surface layer of water molecules to act like a stretched film over the surface of the water_surface tension)
- Ex: water striders

1. COMPOUNDS \& BONDING:

2. Ionic Bonding:

- Transfer of electrons creating ions that attract each other = lonic Bond

Nat Socium
Cl-cholerine
II. WATER IS POLAR

- The water molecules also adhere to each other because of polarity (unequal distribution of charge)
The attraction of opposite charges forms a weak bond called a hydrogen bond
- This keeps large molecules together! (Ex:proteins)

III. UNIQUENESS OF WATER- due to its polarity!

2. Creeps up in thin tubes (Capillary action)
oThe polarity of water allows plants to get water from the ground - Water creeps up tubes in plant roots and stems

Ionic Bonding:

- Ions = charged atoms because they have gained or lost electron(s)
-Cations - Atoms that lose electrons become more positive
-Anions- Atoms that gain electrons become more negative
-Atoms gain/lose electrons efficiently

\bigcirc lons in living things:
- Include- sodium, potassium, calcium, chloride, carbonate ions
- Help maintain homeostasis as these ions travel in and out of cells
- Help transmit signals among cells that allow you to see, taste, hear, feel, and smell

Dissecting an Element:

In a neutral atom the following is true:

- Number of Protons = Atomic Number
- Number of Electrons = Atomic Number**
- Number of Neutrons + Number of Protons = Atomic Mass**
- Number of Neutrons = Mass Number - Atomic Number

For Krypton:

- Number of Protons $=$ Atomic Number $=36$
- Number of Electrons= Atomic Number $=36$
- Number of Neutrons = Mass Number-Atomic

Number: 84-36=48

Ions

An ion is an atom with a positive or negative charge. This means it has either more or less electrons than protons.
$\bigcirc \mathrm{Kr}+$ is a positively charged Krypton ion

- It lost an electron to become positive
- It has 36 protons, and 35 electrons
$\bullet \mathrm{Kr}$ - is a negatively charged Krypton ion - It gained an electron to become negative - It has 36 protons and 37 electrons

Ion Practice

Mg-

Atomic number $=$
Mass number=
Protons =
Electrons =
Neutrons=
Valence electrons=

