<u>Catalyst #1</u>

- What are the stages of mitosis, in order?
- In which phase do chromosomes line up at the equator of a cell?
- If a parent cell has 46 chromosomes and it goes through cell division, how many chromosomes will the daughter cells have?

MEIOSIS

Division of sex cells

MEIOSIS VOCABULARY:

- <u>Diploid</u> = a cell containing TWO sets of chromosomes.
 - one set inherited from each parent
 - 2n (number of chromosomes)
 body cells (somatic cells)

MEIOSIS VOCABULARY:

•<u>Haploid</u> = a cell with only ONE set of chromosomes.

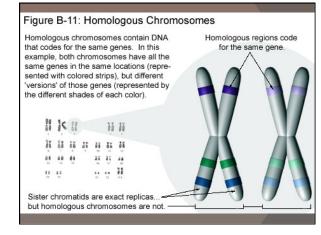
In (number of chrom<u>osomes)</u>

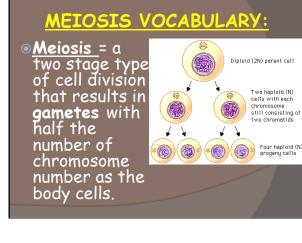
<u>sex cells</u> (gametes)

haploid chromosome

MEIOSIS VOCABULARY:

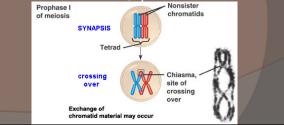
- •Gamete = sex cells
 - •<u>Sperm</u>=male gamete
 - •<u>Egg</u> = female gamete

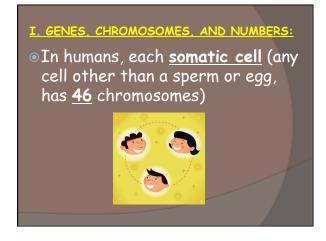


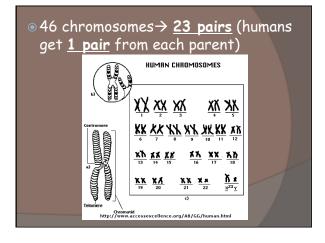

MEIOSIS VOCABULARY:

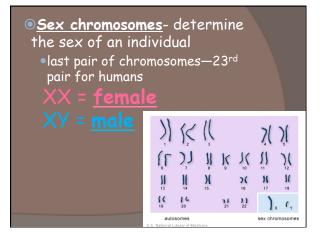
Homologous <u>chromosomes</u> = paired chromosomes that have genes for the same traits arranged in the same order. - One homologous

 One homologous chromosome is inherited from the organism's father, the other from the mother.




MEIOSIS VOCABULARY:

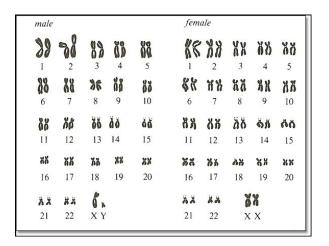

 <u>Crossing over</u> = when nonsister chromatids of homologous chromosomes exchange genetic information, results in a new combination of genes.



MEIOSIS VOCABULARY:

- Fertilization = the process of joining gametes.
- <u>Zygote</u> = when sperm (haploid) fertilizes the egg (haploid), the resulting cell is the zygote (diploid).

The <u>number of chromosomes</u> for an organism is NOT related to the <u>complexity</u> of that organism!!


Ex: A dog has 78 body chromosomes and humans have 46 body chromosomes
A thousand or more genes are lined up on a chromosomes at one time

Diploid & Haploid Numbers

 Each <u>somatic cell</u> of an organism contains <u>paired</u> chromosomes.

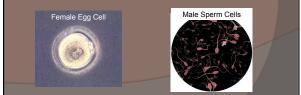
K Chromosome 1	P Chromosome 2	K Chromosome 3	Chromosome 4	Chromosome 5	Chromosome 6	Chromosome 7
(Chromosome 8	Chromosome 9	Chromosome 10	Chromosome 11	Chromosome 12	Chromosome 13	Chromosome 14
Chromosome 15	Chromosome 16	Chromosome 17	Chromosome 18	Chromosome 19	Chromosome 20	Chromosome 21

- Half of each pair came from each parent. These cells are said to have 2n chromosomes, or a full set.
 - •They are **DIPLOID**
 - •Ex: Humans have 46 body chromosomes

- have 1n chromosomes
 - -Ex: Humans have 23 chromosomes in their gametes (egg or sperm cell)

 Sex cells will fuse with another sex cell during fertilization to create a <u>2n</u>

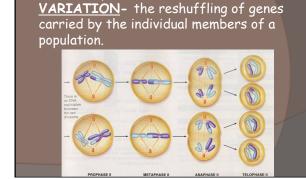
<u>organism</u>.



 So if human sperm and egg both have 23 chromosomes, after fertilization an embryo would have 46 chromosomes!

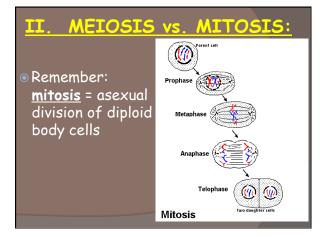
<u>2 Reasons why Meiosis is</u> <u>significant!!</u>

 <u>Meiosis</u> is another form of cell division that <u>creates haploid</u> <u>cells</u> to be used for reproduction

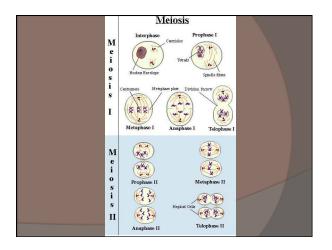


<u>2 Reasons why Meiosis is</u> <u>significant!!</u>

 If mitosis was the only form of cell division, then new offspring would always have <u>2</u> <u>times</u> as many <u>chromosomes</u> as their parents.


2 Reasons why Meiosis is significant!!

 Eventually, there would be so many chromosomes, the organism would <u>not survive</u> or be severely <u>mutated</u>.



2 Reasons why Meiosis is significant!!

2. Meiosis provides **GENETIC**

II. MEIOSIS vs. MITOSIS:					
	<u>Meiosis</u>	<u>Mitosis</u>			
Cell type of parent	diploid	diploid			
Number of daughter cells produced	4	2			
Number of cell divisions	2	1			
Genetic relationship of daughter cells to parent cell	different	identical			
Genetic relationship of daughter cells to one another	different	identical			

