

●In some, neither allele is dominant or many alleles control the trait.

INCOMPLETE DOMINANCE

Notation:

•Alleles are all capital letters because NEITHER one <u>dominates</u> the other. So one of the alleles has a <u>prime</u> (') on it to represent an alternate expression of the gene. Always make a <u>KEY</u> to show the genotypes and the resulting phenotypes.

 Still supports Mendel's Law of Independent Assortment

● A red snapdragon is homozygous and is crossed with a homozygous white snapdragon. What are the genotypic and phenotypic ratios of this cross?

• Ex. 2) Then cross the F₁ generation and what are the genotypic and phenotypic ratios of this cross?

CODOMINANCE

 Phenotypes of heterozygous offspring are showing both traits!

• Ex: red cows crossed with white will generate roan cows. <u>Roan</u> refers to cows that have red coats with white blotches.

• In chickens, black-feathered is not wholly dominant over white-feathered, so heterozygous chickens are black and white checkered. Cross two heterozygous chickens. What would the appearance of their offspring be?

In shorthorn cattle, the hybrid between red and white is called a roan. What phenotypes would result in the cross of a roan and a white?

3. MULTIPLE ALLELES

- Definition:
- More than <u>2 alleles</u> for a single gene can control a trait.
- Multiple alleles must be studied by looking at the entire population of species.

MULTIPLE ALLELES

- Each individual carries only 2 alleles for any gene (one on each homologous chromosome).
 - In this form of inheritance, a trait can have 1 gene, but <u>100 alleles</u> for that gene.

 Notation: The possible geno 	types/pher	notypes:	B
GENOTYPES		PHENOTYPES	0
Homozygous type A	I^I^	type <u>A</u> blood	
Heterozygous type A	I^i	type <u>A</u> blood	
Homozygous type B	I ^B I ^B	type <u>B</u> blood	
Heterozygous type B	I ^B i	type <u>B</u> blood	
Codominant type AB	IAIB	type <u>AB</u> blood	
Recessive type O	ii	type <u>O</u> blood	

d Blood Il Surface benotype) Applications role Applications role A	Blood Type (genotype)	Type A (AA, AO)	Type B (BB, BO)	Type AB (AB)	Type 0 (00)
A and utinonens only B and utinonens only A and B and utinonens	Red Blood Cell Surface Proteins		BBB B B B B B B B B B B B B B B B B B	A BAB	0
Truggiumogena only in aggiumogena only interval a aggiumogena into aggiumogena	pnenotype)	A agglutinogens only	B agglutinogens only	A and B agglutinogens	No agglutinogens

- If you have the protein
 = Rh +
- If you DO NOT have the protein = Rh -

 The most rare blood type would be <u>AB-</u>, about 0.45% of the population.

•<u>O</u> is the universal donor

•<u>AB</u> is the universal receiver

• Definition:

 These traits will occur
 <u>MORE</u> frequently in males than females, such as color blindness and hemophilia.

 Alleles for a gene may be present on the X chromosome but <u>absent</u> on the Y. These are called sexlinked genes.

• This means that <u>males</u> may inherit just <u>one</u> allele for a characteristic and that allele will be expressed, whether it is dominant or recessive, because it is the <u>only</u> allele present on their X chromosome.

\times \times

•X-linked traits most likely will be <u>RECESSIVE</u> to the normal condition and the Y chromosome lacks the gene for a trait, so males have a higher chance of having the disorder.

•<u>No</u> alleles are written on the Y chromosome!

- Ex: Colorblind male = X^bY and Normal male = X^BY
- <u>Heterozygous</u> FEMALES are known as <u>carriers</u>, X^BX^b

• Ex.1) Color blindness is a sex-linked trait that is caused by a <u>recessive</u> <u>allele.</u> A colorblind man marries a woman that is homozygous for normal vision.

 The phenotypes may vary depending on the number of dominant and recessive alleles in the genotype

Traits that show
 great variability are
 a result of polygenic inheritance

 Ex: eye color, skin color, height, facial features

